Music Information Retrieval
Introduction, Technology, and Applications

alexander lerch
introduction
about alexander lerch

- **education**
 - Electrical Engineering (Technical University Berlin)
 - Tonmeister (University of Arts Berlin)

- **professional**
 - Assistant Professor at the [Georgia Tech Center for Music Technology](http://www.gatech.edu)
 - previous: CEO at zplane.development

- **research focus**
 - music information retrieval, audio content analysis
 - intelligent music software
introduction

music technology

- what is **music technology**
 - technology for creating, assessing, and consuming music

- technology has influenced music for a long time
 - new styles and genres
 - crooning (microphone & amplification)
 - rock (electric guitar)
 - hip-hop (sampling)
 - music production technology
 - recording & reproduction quality
 - new audio effects
introduction

music technology

- what is **music technology**
 - technology for creating, assessing, and consuming music

- technology has influenced music for a long time
 - new styles and genres
 - crooning (microphone & amplification)
 - rock (electric guitar)
 - hip-hop (sampling)

- music production technology
 - recording & reproduction quality
 - new audio effects
introduction

music technology

- what is **music technology**
 - technology for creating, assessing, and consuming music

- technology has influenced music for a long time
 - new styles and genres
 - crooning (microphone & amplification)
 - rock (electric guitar)
 - hip-hop (sampling)

- music production technology
 - recording & reproduction quality
 - new audio effects
introduction

music technology

- what is **music technology**
 - technology for creating, assessing, and consuming music

- technology has influenced music for a long time
 - new styles and genres
 - crooning (microphone & amplification)
 - rock (electric guitar)
 - hip-hop (sampling)

- music production technology
 - recording & reproduction quality
 - new audio effects
what is **music technology**
- technology for creating, assessing, and consuming music

technology has influenced music for a long time
- new styles and genres
 - crooning (microphone & amplification)
 - rock (electric guitar)
 - hip-hop (sampling)
- music production technology
 - recording & reproduction quality
 - new audio effects
Music information retrieval overview

- **MIR**: analysis and automatic extraction of *any kind of information* from the audio signal
 - *score info*: melody, structure, instruments, chords, composer, ...
 - *performance info*: tempo, tuning, artist, ...
 - *production info*: sound engineer, equipment, ...
 - *complex high-level info*: style, mood, ...
music information retrieval

overview

- **MIR**: analysis and automatic extraction of *any kind of information* from the audio signal
 - *score* info:
 - melody, structure, instruments, chords, composer, . . .
 - *performance* info:
 - tempo, tuning, artist, . . .
 - *production* info:
 - sound engineer, equipment, . . .
 - *complex high-level* info:
 - style, mood, . . .
music information retrieval
overview

- **MIR**: analysis and automatic extraction of *any kind of information* from the audio signal
 - *score* info:
 - melody, structure, instruments, chords, composer, . . .
 - *performance* info:
 - tempo, tuning, artist, . . .
 - *production* info:
 - sound engineer, equipment, . . .
 - *complex high-level* info:
 - style, mood, . . .
music information retrieval

overview

- **MIR**: analysis and automatic extraction of *any kind of information* from the audio signal
 - *score* info:
 melody, structure, instruments, chords, composer, ...
 - *performance* info:
 tempo, tuning, artist, ...
 - *production* info:
 sound engineer, equipment, ...
 - *complex high-level* info:
 style, mood, ...
music information retrieval
overview

- **MIR**: analysis and automatic extraction of *any kind of information* from the audio signal
 - *score* info:
 - melody, structure, instruments, chords, composer, . . .
 - *performance* info:
 - tempo, tuning, artist, . . .
 - *production* info:
 - sound engineer, equipment, . . .
 - *complex high-level* info:
 - style, mood, . . .
music information retrieval
interdisciplinarity

• machine learning and artificial intelligence
 • data-driven approaches:
 classification, regression, clustering

• signal processing
 • rule-based approaches:
 transforms, pattern recognition

• perception and cognition
 • psycho-acoustics, perception of mood or similarity

• music theory
 • rules and expectations:
 structure and repetition, chord progressions
music information retrieval
related tasks & fields

- **audio forensics**: crime scene reconstruction, crime detection
- **context/activity detection**: indoor/outdoor, meeting/working out
- **environmental monitoring**: noise pollution analysis
- **acoustic fault detection**: machine diagnosis through sound
- **speech & natural language processing**: time-domain signal, high level meaning with structural properties
music information retrieval
related tasks & fields

- **audio forensics:**
 crime scene reconstruction, crime detection

- **context/activity detection:**
 indoor/outdoor, meeting/working out

- **environmental monitoring:**
 noise pollution analysis

- **acoustic fault detection:**
 machine diagnosis through sound

- **speech & natural language processing:**
 time-domain signal, high level meaning with structural properties
music information retrieval

differences to other fields

analysis of music data in some ways unique:

- image & video:
 - no/low res time domain
 - 2-dimensional data
 - objects don’t superpose but mask each other

- environmental audio:
 - many non-pitched sources
 - no structure, sources uncorrelated

- speech:
 - low-complexity signal
 - language models and meaning comparably clearly defined
music information retrieval

history & growth

- **ISMIR**: International Society for Music Information Retrieval (est. 2008)

- **academia**
 - increasing number of publications
 - increasing number of society members
 - rising impact factor of conference

- **industry**
 - increasing number of high profile conference sponsorships
 - sponsoring research
 - growing number of start-ups
 - aggressive hiring
music information retrieval

history & growth

- **ISMIR**: International Society for Music Information Retrieval (est. 2008)

- **academia**
 - increasing number of publications
 - increasing number of society members
 - rising impact factor of conference

- **industry**
 - increasing number of high profile conference sponsorships
 - sponsoring research
 - growing number of start-ups
 - aggressive hiring
music information retrieval

history & growth

- **ISMIR**: International Society for Music Information Retrieval (est. 2008)

- **academia**
 - increasing number of publications
 - increasing number of society members
 - rising impact factor of conference

- **industry**
 - increasing number of high profile conference sponsorships
 - sponsoring research
 - growing number of start-ups
 - aggressive hiring
music information retrieval

General uses:

- **learn:**
 - academic *gain of knowledge*

- **listen:**
 - allow browsing and discovery

- **produce:**
 - enhance music production intelligently

- **educate:**
 - support music students interactively

- **create:**
 - generate new content
music information retrieval
application examples

- **fingerprinting**: identify songs playing
- **recommendation systems**: playlist generation, music similarity
- **automatic music coach**: computer-assisted practice
- **performance generator**: render scores like a human
- **music generation**: generate sound tracks, elevator music
Music Information Retrieval

Application Examples

- **Fingerprinting:**
 - Identify songs playing

- **Recommendation Systems:**
 - Playlist generation, music similarity

- **Automatic Music Coach:**
 - Computer-assisted practice

- **Performance Generator:**
 - Render scores like a human

- **Music Generation:**
 - Generate sound tracks, elevator music
music information retrieval
application examples

- **fingerprinting**: identify songs playing
- **recommendation systems**: playlist generation, music similarity
- **automatic music coach**: computer-assisted practice
- **performance generator**: render scores like a human
- **music generation**: generate sound tracks, elevator music
music information retrieval

application examples

- **fingerprinting**: identify songs playing
- **recommendation systems**: playlist generation, music similarity
- **automatic music coach**: computer-assisted practice
- **performance generator**: render scores like a human
- **music generation**: generate sound tracks, elevator music
music information retrieval
application examples

- **fingerprinting**: identify songs playing
- **recommendation systems**: playlist generation, music similarity
- **automatic music coach**: computer-assisted practice
- **performance generator**: render scores like a human
- **music generation**: generate sound tracks, elevator music
music information retrieval

Georgia Tech research examples: drum transcription

- **goal:**
 detect all drum events

- **usage:**
 rhythm analysis/modification

- **approach:**
 Non-Negative Matrix Factorization

- **advantages:**
 - low number of training samples
 - computationally efficient
 - competitive results
music information retrieval
Georgia Tech research examples: drum transcription

- **Goal:**
 - Detect all drum events

- **Usage:**
 - Rhythm analysis/modification

- **Approach:**
 - Non-Negative Matrix Factorization

- **Advantages:**
 - Low number of training samples
 - Computationally efficient
 - Competitive results
music information retrieval
Georgia Tech research examples: drum transcription

- **goal:**
 detect all drum events

- **usage:**
 rhythm analysis/modification

- **approach:**
 Non-Negative Matrix Factorization

- **advantages:**
 - low number of training samples
 - computationally efficient
 - competitive results
Music Information Retrieval

Georgia Tech research examples: music performance assessment

- **goal:**
 assess and rate student music performances

- **approach:**
 feature design/learning & regression

- **challenges:**
 - subjective human assessments
 - different musical scores
 - technical vs. artistic proficiency
music information retrieval
Georgia Tech research examples: music performance assessment

- **goal:**
 assess and rate student music performances

- **approach:**
 feature design/learning & regression

- **challenges:**
 - subjective human assessments
 - different musical scores
 - technical vs. artistic proficiency
music information retrieval

Georgia Tech research examples: music performance assessment

- **goal:**
 assess and rate student music performances

- **approach:**
 feature design/learning & regression

- **challenges:**
 - subjective human assessments
 - different musical scores
 - technical vs. artistic proficiency
music information retrieval
Georgia Tech research examples: music generation

goal:
robot that can compose, improvise, and interact

approach:
symbolic generation with DNNs

challenges:
- very style dependent
- learned model hard to understand/interpret
- evaluation nearly impossible

youtube.be/l9OUbqWHOSk
music information retrieval
Georgia Tech research examples: music generation

- **goal:**
 robot that can compose, improvise, and interact

- **approach:**
 symbolic generation with DNNs

- **challenges:**
 - very style dependent
 - learned model hard to understand/interpret
 - evaluation nearly impossible
music information retrieval

Georgia Tech research examples: music generation

goal:
robot that can compose, improvise, and interact

approach:
symbolic generation with DNNs

challenges:
- very style dependent
- learned model hard to understand/interpret
- evaluation nearly impossible

[YouTube video](https://youtu.be/l9OUbqWHOSk)
MIR: young field with many interesting research questions

- **unsolved tasks**, e.g.
 - music transcription
 - source separation
 - music generation

- **current approaches** only work to a certain degree
 - feature learning
 - DNN architectures (CNN, RNN, etc.)
 - user-adaptivity, online learning

- **challenges**
 - meaning in music: understanding high level concepts
 - domain knowledge: how to enhance data-driven approaches
 - data: how to deal with unlabeled/weakly labeled data

- **potential**
 - commercialization still immature
MIR: young field with many interesting research questions

- **unsolved tasks**, e.g.
 - music transcription
 - source separation
 - music generation

- **current approaches** only work to a certain degree
 - feature learning
 - DNN architectures (CNN, RNN, etc.)
 - user-adaptivity, online learning

- **challenges**
 - meaning in music: understanding high level concepts
 - domain knowledge: how to enhance data-driven approaches
 - data: how to deal with unlabeled/weakly labeled data

- **potential**
 - commercialization still immature
MIR: young field with many interesting research questions

- **unsolved tasks**, e.g.
 - music transcription
 - source separation
 - music generation

- **current approaches** only work to a certain degree
 - feature learning
 - DNN architectures (CNN, RNN, etc.)
 - user-adaptivity, online learning

- **challenges**
 - meaning in music: understanding high level concepts
 - domain knowledge: how to enhance data-driven approaches
 - data: how to deal with unlabeled/weakly labeled data

- **potential**
 - commercialization still immature
MIR: young field with many interesting research questions

- **unsolved tasks**, e.g.
 - music transcription
 - source separation
 - music generation

- **current approaches** only work to a certain degree
 - feature learning
 - DNN architectures (CNN, RNN, etc.)
 - user-adaptivity, online learning

- **challenges**
 - meaning in music: understanding high level concepts
 - domain knowledge: how to enhance data-driven approaches
 - data: how to deal with unlabeled/weakly labeled data

- **potential**
 - commercialization still immature
Music Information Retrieval (MIR): young field with many interesting research questions

- **Unsolved tasks**, e.g.
 - music transcription
 - source separation
 - music generation

- **Current approaches** only work to a certain degree
 - feature learning
 - DNN architectures (CNN, RNN, etc.)
 - user-adaptivity, online learning

- **Challenges**
 - meaning in music: understanding high level concepts
 - domain knowledge: how to enhance data-driven approaches
 - data: how to deal with unlabeled/weakly labeled data

- **Potential**
 - commercialization still immature
other project examples:
- sample detection
- instrument recognition
- style transfer
- concert stitching
- . . .

Georgia Tech Center for Music Technology:
- BS, MS, & PhD programs
- research intensive
- some funded student GRA positions
- industry partners, good job placement
thank you!

contact

Alexander Lerch:
alexander.lerch@gatech.edu
www.AudioContentAnalysis.org
www.alexanderlerch.com

Georgia Tech Center for Music Technology
gtcmt.gatech.edu

Music Informatics Group
musicinformatics.gatech.edu